
Machine learning can help spot bank distress – BoE paper

Machine learning (ML) models can help to build early-warning indicators of bank distress, researchers says in a new Bank of England working paper, published today (October 4).
In Predicting bank distress in the UK with machine learning, Joel Suss and Henry Treitel draw on confidential supervisory assessments of firm risk. They say this gives them an earlier insight into when a firm is deemed high risk. Other researchers have tended to focus on banks that have suffered “outright failure”.
They
Only users who have a paid subscription or are part of a corporate subscription are able to print or copy content.
To access these options, along with all other subscription benefits, please contact info@centralbanking.com or view our subscription options here: http://subscriptions.centralbanking.com/subscribe
You are currently unable to print this content. Please contact info@centralbanking.com to find out more.
You are currently unable to copy this content. Please contact info@centralbanking.com to find out more.
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. Printing this content is for the sole use of the Authorised User (named subscriber), as outlined in our terms and conditions - https://www.infopro-insight.com/terms-conditions/insight-subscriptions/
If you would like to purchase additional rights please email info@centralbanking.com
Copyright Infopro Digital Limited. All rights reserved.
You may share this content using our article tools. Copying this content is for the sole use of the Authorised User (named subscriber), as outlined in our terms and conditions - https://www.infopro-insight.com/terms-conditions/insight-subscriptions/
If you would like to purchase additional rights please email info@centralbanking.com